
Fredo6 – Extensions to bezierspline.rb Page 1 / 12 v1.0 – 02 November 2007

PLUGINS ENVIRONMENT TO EXTEND Bezierspline.rb

PROGRAMMING MANUAL

Credits and acknowledgments to:

- Carlos António dos Santos Falé, for the Cubic Bezier algorithm (cubicbezier.rb, March

2005), which I incorporated as an extension to my macro and is used to illustrate this manual

Foreword

While designing the script bezierspline.rb, I realized that the mathematical algorithm could be

isolated and abstracted from the rest of the environment, which is finally just dealing with the

integration in Sketchup of the creation and the edition mode of your curve, seen as a set of

points.

Actually, all we need is a method to compute

- a new set of points, i.e. the resulting curve (crvpts),

- from a set of Control Points (ctrlpts)

- with some parameters, such as precision

In other terms, if you have such a method behaving as

crvpts = compute_my_own_curve ctrlpts, precision

…then it should be possible to integrate it as an extension to bezierspline.rb.

Of course, as I did not want that the master macro bezierspline.rb had to be modified when

integrating new algorithms, the extension must respect some naming conventions, as we'll see

later on.

Also, as your curve algorithm may require a few more parameters than just a single 'Precision'

factor, the extension environment provides ways to prompt the user for extra values.

Requirement: you need to have the script bezierspline.rb in your Sketchup Plugins. If you

intend to offer multi-language support in your extension (which is always a good idea), you

can use another macro-library I designed, LibTraductor.rb.

Test utility: I did not publish one, but you can have a look at BZ__CubicBezier.rb, which is

precisely implemented as an extension, or at BZ__Divider.rb, which is a test macro dividing a

polyline into equal segments.

Compatibility: the extension environment has been tested with Sketchup v5 and v6 (Pro and

free versions, English and recent v6 French) on Windows XP and Windows Vista. I don't

know however if it works on Mac

Fredo6 – Extensions to bezierspline.rb Page 2 / 12 v1.0 – 02 November 2007

1. How to design an extension to Bezierspline.rb

1) Naming Conventions and Programming Model

In the simplest form, you just need to provide a unique method to compute the curve

from a set of control points and some extra parameters. This method must be encapsulated

in a Ruby module, itself written in a script file located in the Sketchup Plugins directory.

The following naming convention must be respected:

1) The file name must begin with BZ__, for instance, BZ__CubicBezier.rb

2) Within the file name, a particular constant <FILE NAME>__LIST must be

defined and contain an array of one or several module names where you have
your extensions. The module names are defined as strings, with the right case, as

coded in your file. For instance

BZ__CUBICBEZIER__LIST = ["BZ__CubicBezier"]

Normally you specify the list as an array of strings, but it works if you pass only

a simple string. (for instance BZ__CUBICBEZIER__LIST = "BZ__CubicBezier").

3) You must have a module with the specified name, in which you have defined:

� Your computing method, with the method name bz_compute_curve,
implementing the required interface (see below for specifications)

� A set of constants BZ_xxx that specify the behavior of your extension

Here is a complete illustration, taken from file BZ__CubicBezier.rb:

BZ__CUBICBEZIER__LIST = "BZ__CubicBezier"

module BZ__CubicBezier

BZ_TYPENAME = "BZ__CubicBezier"
BZ_MENUNAME = ["Cubic Bezier curve",
 "|FR|Courbe de Bezier spline cubique"]
BZ_PRECISION_MIN = 1
BZ_PRECISION_MAX = 20
BZ_PRECISION_DEFAULT = 7
BZ_CONTROL_MIN = 3
BZ_CONTROL_MAX = 200
BZ_CONTROL_DEFAULT = 999
BZ_CONVERT = "BZ__Polyline"
BZ_LOOPMODE = -2

def BZ__CubicBezier.bz_compute_curve(pts, precision)
 …..
 #Code to compute the resulting mathematical curve as an array of point <crvpts>
 …..
 crvpts #Return value of the method is the array of points computed
end

….. #Rest of your code

end #module BZ__CubicBezier

In general you'll make the top method bz_compute_curve fairly short, just calling another

method in your module (or elsewhere) that does the actual mathematical calculation.

Fredo6 – Extensions to bezierspline.rb Page 3 / 12 v1.0 – 02 November 2007

2) The constants parameters

A number of constants must be defined in your module so that the master macro

bezierspline.rb knows how to handle your curve in Sketchup. Here are the conventions,

with an example in italic:

BZ_TYPENAME = "BZ__CubicBezier"

This is the unique code to characterize your curve, defined as a string. It is

language independent and will not appear explicitly to the Sketchup user. It must

also be unique within the whole community of extensions to bezierspline.rb, because it

is actually stored in the Sketchup object curve itself (so that it can be edited at a later

stage). So I would encourage you to use a naming convention to make it unique (best

is simply the module name) and avoid types like "MyCurve", which could be thought

of by anybody else.

BZ_MENUNAME = ["Cubic Bezier curve",
 "|FR|Courbe de Bezier spline cubique"]

This is the string that will appear in the Sketchup menu "Draw", as well as in the

contextual menus or other dialog interactions. It is the one visible to the end-user. It is

a good idea to encode it for supporting multi-language (see manual on

LibTraductor.rb).

BZ_CONTROL_MIN = 3

BZ_CONTROL_MAX = 200

BZ_CONTROL_DEFAULT = 999

These 3 parameters define the limits and default values for the number of control

points that the end-user can enter in Sketchup when creating the curve, and when

editing it later on. They must be of type Positive Integer >= 2

There are a few conventions:

� if BZ_CONTROL_MIN = 2, then your computation method will be called as the

end-user enters the second control point. You should therefore be careful to

support it in your calculation method.

� if BZ_CONTROL_DEFAULT = 999, then you indicate that by default the curve will

be created in 'Open-ended' mode, that is, in sequential order.

In the case of Cubic Bezier curves, you need at least 3 control points (otherwise, it

would just be a segment), and I considered that you can comfortably do what you need

with a maximum of 200 control points. It is also more natural to draw them in Open-

Ended mode.

BZ_PRECISION_MIN = 1

BZ_PRECISION_MAX = 20

BZ_PRECISION_DEFAULT = 7

These parameters define the limits and default values for the Precision parameter,

which normally determines the level of details when drawing the curve in Sketchup. It

is dependent on your algorithm. Although they are usually numeric, there is actually

no constraint on the type of this parameter, as long as it supports comparison with

<=>.

If both min and max are equal, the user cannot change the Precision parameter.

Fredo6 – Extensions to bezierspline.rb Page 4 / 12 v1.0 – 02 November 2007

BZ_CONVERT = "BZ__Polyline"

This parameter is a list of curve typenames that can be converted into your curve type.

They are specified as a list of strings separated by comma or semi-column.

The principle of the conversion is to take the vertices of the origin curve and use them

as control points to compute the destination curve.

Remember that the typename of the curve is actually stored within the curve by

bezierspline.rb.

The statement BZ_CONVERT = "BZ__Polyline" just says that any Sketchup curve of

type "BZ__Polyline" can be converted into a Cubic Bezier curves.

For instance here is a Polyline curve:

When you select the curve and show the contextual menu, you will have a menu item

allowing you to convert the Polyline into a Cubic Bezier curve.

Here is the result, which you can further edit to move, add, delete the control points, or

change the Precision parameter.

Fredo6 – Extensions to bezierspline.rb Page 5 / 12 v1.0 – 02 November 2007

If you pass '*' in the list, then any Sketchup curve could be converted into your curve.

This is the case for Polyline curves, which are defined with BZ_CONVERT = "*". I did

not do it directly for Cubic Bezier curves, as you usually need to prepare the curve so

that you get a nicer result. So the rational order of things implies 2 steps:

 Any Sketchup curve � Polyline � Cubic Bezier Curve

For convenience, I made the typename specified as regular expression, so that you rely

on some naming conventions to offer conversion to several curve types.

BZ_LOOPMODE

This parameter indicates whether you support Loop mode for your mathematical

curve. The valid values are:

BZ_LOOPMODE = 0 NO support of loop mode (or your curve is already a loop)

BZ_LOOPMODE = 1 Support of loop mode with a single segment

BZ_LOOPMODE >= 2 Support of loop mode with a 'nice' closure. The value of

the constant BZ_LOOPMODE indicates the default number of points for the loop

closure (which can be changed by the user in the VCB, by typing a new number

followed by 'c'). This is the value that will be passed to your calculation method in

the argument loop. Note that if BZ_LOOPMODE = 2, then, the default value will be

the Precision parameter.

Whenever BZ_LOOPMODE is positive, it is the responsibility of the computing method

to close the loop, based on the value of argument loop.

Bezierspline.rb supports anyway a built-in method to close curves via a segment or

via a 'nice' loop. In such case, you need to pass the constant as a negative number,

and you don't have to bother with loops in your calculation method:

BZ_LOOPMODE = -1 loop mode with a single segment is provided in standard

BZ_LOOPMODE <= -2 loop mode with a 'nice' closure is provided by

bezierspline.rb. Actually, I have implemented it as a portion of Bezier classic

curve, as this curve has the good property to respect tangency at start- and end-

point. The absolute value of BZ_LOOPMODE will be passed to your calculation

method in the argument loop. Note that if BZ_LOOPMODE = -2, then, the default

value will be the Precision parameter.

To be more concrete, here are the definitions I used in the 3 curves I provided:

- Bezier Classic � BZ_LOOPMODE <= -15

- Cubic Bezier � BZ_LOOPMODE <= -2

- Polyline � BZ_LOOPMODE <= -1

BZ_VERTEX_MARK

This parameter allows showing the vertices of the computed curves by default when

creating or editing a curve (vertices are displayed as blue dots). The end-user can

indeed show or hide the marks by the toggle key F5. The valid values are:

BZ_ VERTEX_MARK = 0 Vertex marks are NOT shown by default

BZ_ VERTEX_MARK = 1 Vertex marks are shown by default

Fredo6 – Extensions to bezierspline.rb Page 6 / 12 v1.0 – 02 November 2007

3) The computing method

There are 3 valid forms, depending on which level of features you implement in your

extension. bezierspline.rb will detect which form you use and call it appropriately.

crvpts = modulename.bz_compute_curve ctrlpts, precision

crvpts = modulename.bz_compute_curve ctrlpts, precision, loop

crvpts = modulename.bz_compute_curve ctrlpts, precision, loop, extras

It must respect the following programming interface:

� Name: it must be in the form modulename.bz_compute_curve.

� Return Value: an array of 3D points defining the computed curve

� Arguments:

- ctrlpts is the array of control points (at least 2 points)

- precision is the Precision parameter which you have your own

interpretation

- loop is a numeric flag, indicating whether you should:

o Close the loop by a nice curve (loop >= 2)

o Close the loop by a segment (loop = 1)

o No loop closure (loop = 0)

- extras is a hash array of extra parameters (see section 2.2):

It is very important that your method always behaves correctly and never crashes in
all situations. The macro bezierspline.rb does not check the return value and just displays

the points computed. The reason is that it would not know what else to do in such

situations.

It is also very important that the calculation is fast, as your method will be called when

drawing or modifying interactively the curve.

4) Default value for BZ_xxx constants

For convenience, I have defined defaults if a constant is not explicitly defined, but I would

encourage you to always give them definition and not rely on defaults.

BZ_TYPENAME � same as module name

BZ_MENUNAME � same as BZ_TYPENAME

BZ_PRECISION_MIN � 0

BZ_PRECISION_MAX � 0
BZ_PRECISION_DEFAULT � same as BZ_CONTROL_MIN

BZ_CONTROL_MIN � 3

BZ_CONTROL_MAX� 500
BZ_CONTROL_DEFAULT � same as BZ_CONTROL_MAX

BZ_LOOPMODE � 0 (no support of loop mode)

BZ_VERTEX_MARK � 0 (no display of vertices by default)

Fredo6 – Extensions to bezierspline.rb Page 7 / 12 v1.0 – 02 November 2007

2. A full example with the module Polyline

The extension Polyline is actually integrated in the file bezierspline.rb, but is actually

coded like a normal extension (ClassicBezier as well by the way).

Here is the full code

module BZ__Polyline

BZ_TYPENAME = "BZ__Polyline" #unique symbolic name

BZ_MENUNAME = ["Polyline"] #kept the same name in English and French

BZ_PRECISION_MIN = BZ_PRECISION_MAX = 1 #no precision needed

BZ_CONTROL_MIN = 2 #allow to have a polyline with only one segment

BZ_CONTROL_MAX = 300 #hope it is enough!

BZ_CONTROL_DEFAULT = 999 #open end drawing

BZ_CONVERT = "*" #convert any curve made of at least 2 segments

BZ_LOOPMODE = -1 #allow closing by segment done by bezierspline.rb

#the calculation method just returns the polygon of control points

def BZ__Polyline.bz_compute_curve(pts, numseg)

 pts

end

end #End module BZ__Polyline

Fredo6 – Extensions to bezierspline.rb Page 8 / 12 v1.0 – 02 November 2007

3. More advanced features

1) Organizing modules, constants and methods

It is important that you understand how the macro bezierspline.rb proceeds to find out

about the extensions.

a) It first look for scripts files following the naming convention BZ__xxxx.rb in

the Plugins directory of Sketchup, as well as in a subdirectory BZ_Dir, if present.

The benefit of putting your extensions in the BZ_Dir folder is that they are not

loaded automatically by Sketchup at start time, but explicitly by the macro

bezierspline.rb.

b) It then loads each of these files if not already loaded and look for a constant
defined at file level <filename>_LIST.

c) It then looks for the BZ_xxx constants and method bz_compute_curve, within
the strict scope of the modules specified in the list. Actually, it does not care too

much if the module is in the same file or in another file, as long as it is loaded in

the Ruby environment.

It may happen that you want to code several extensions within the same file, but that the

algorithms are close enough that you don't want to duplicate the critical code. You can do

it, in several ways.

Let's take the example of a file BZ__SuperBezier.rb, and let's assume you provide two

classes of SuperBezier curves, A and B. In file BZ__SuperBezier.rb, you would write:

BZ__SUPERBEZIER_LIST = ["SuperBezier_A", "SuperBezier_B"]

Module SuperBezier_A

BZ_TYPENAME= "SuperBezier_TypeA"
#etc… for other BZ_xxx constants

def SuperBezier_A.bz_compute_curve(pts, precision)

 crvpts = SuperMaths.compute pts, precision, 'A'

end
end

Module SuperBezier_B

BZ_TYPENAME= "SuperBezier_TypeB"
#etc… for other BZ_xxx constants

def SuperBezier_B.bz_compute_curve(pts, precision)

 crvpts = SuperMaths.compute pts, precision, 'B'

end
end

Module SuperMaths

def SuperMaths.compute(pts, precision, type)

 #your complex algorithm goes here, handling types A and B

end
end

Actually, the module SuperMaths could well be in another file, if you have in

BZ__SuperBezier.rb a require statement to load this other file.

Fredo6 – Extensions to bezierspline.rb Page 9 / 12 v1.0 – 02 November 2007

2) Extra Parameters

In some occasions, you may need much more parameters to specify the curve computation

than just the single Precision parameter.

The macro bezierspline.rb provides some ways to prompt the user for extra parameters,

usually with a dialog box (but not always, as you could take them from a configuration

file for instance or from a crystal ball!).

The important things to know are:

• Extra parameters are defined as a hash array. This is convenient as you can

store any number of values of any type, identified by a key. This is also the format

that is used by LibTraductor dialog boxes if you wish to use them.

• Extra parameters are stored within the Sketchup curve, as attribute of the

Sketchup entity. This means that you can retrieve them when you Edit a curve

• There are 3 particular moment when Extra parameters will be requested to
your module:

- When creating a curve (mode = 'N')

- When converting a Sketchup curve to your curve type (mode = 'C')

- When the end-user want to change parameters by pressing the TAB key

(mode = 'E')

The interface to your callback must respect the following rules:

extras_out = modulename.bz_ask_extras mode, extras_in, ctrlpts, precision

where

� Name: it must be in the form modulename.bz_ask_extras.

� Return Value: a hash array containing the parameters or false if the user

pressed Cancel. In this latter case, the operation will be simply cancelled if it is a

curve creation or a curve creation, and nothing will be changed if it is invoked by

the end-user pressing TAB.

� Arguments:

- mode is a character flag, indicating the event

o mode = 'N' � at creation of the curve

o mode = 'C' � when converting a curve to yours

o mode = 'E' � when the end-user pressed TAB

- extras is a hash array of extra parameters:

- ctrlpts is the array of control points (be careful, it ma be empty when

called at creation!). It is passed for convenience, in case you wish to

compute the limits of some parameters.

- precision is the Precision parameter which you have your own

interpretation. It is also passed for convenience.

I produced an extension BZ__Divider that computes a curve with respecting equal spacing

between points, while making sure that the vertices are located on the polygon of control

points. For this, I needed at least to ask the user for the interval value between points. This

will serve me to illustrate how you can use extra parameters.

Fredo6 – Extensions to bezierspline.rb Page 10 / 12 v1.0 – 02 November 2007

First, I wrote the method for prompting the user:

TTH_Title = ["Parameters of Polyline Divider",
 "|FR| Parametres du Diviseur de Polyline"]
TTH_Interval = ["Interval", "|FR| Intervalle 1"]

….

def BZ__Divider.bz_ask_extras (mode, extras, pts, precision)
 unless @dlg
 @dlg = Traductor::DialogBox.new TTH_Title
 @dlg.field_numeric "Interval", TTH_Interval, 0.cm, 0.cm, nil
 end
 return (@dlg.show extras) ? @dlg.hash_results : false
end

The first time it is called, it will create the dialog box object and display it with the default

value (here 0.cm). I put a lower limit to 0.cm, but no upper limit. The initial display will

thus be:

The user will then enter a value, say 25cm.

The calculation method BZ__Divider.bz_compute_curve must be in the complete form

crvpts = BZ__Divider.bz_compute_curve ctrlpts, precision, loop, extras

When it is called by bezierspline.rb, the hash array argument extras will contain the

value of the interval: extras = {Interval => 25.0cm}, which you can extract by the

statement:

interval = extras["Interval"]

When you later edit the curve and press TAB, you will retrieve this value and can change

it.

You can design more complex dialog boxes of course, depending on your needs. I suggest

you refer to the documentation about LibTraductor.rb.

Now, you are absolutely not forced to prompt the user via LibTraductor utilities. You can

use your own way, for instance with Web dialogs or whatever other mechanisms. You are

not even obliged to prompt the user. Bezierspline.rb makes no hypothesis on what you do

with your method, as long as you return a hash array or false.

However, keep in mind that Bezierspline.rb requires that the argument extras is an hash

array in order to store it as an attribute of the curve (via entity.set_attribute)

Fredo6 – Extensions to bezierspline.rb Page 11 / 12 v1.0 – 02 November 2007

3) Developing and testing your extensions

1) Developing your extension

When you develop, you would probably use the Ruby console in Sketchup. After

modifying your script file(s), you would manually reload them by a statement such as

load 'myfile.rb' typed in at the command prompt of the console.

Note that this will work for all changes except those changes related to:

- Module names

- The callback methods (this is why you should put the 'real' code in other methods.

- Values of BZ_xxx constants

- Adding modules for new extensions within the same file, or in another file

In such cases, you must close Sketchup and restart it. This is because bezierspline.rb has

already loaded your module and processed the constants and method determination.

2) Common Errors

Here are the few typical errors you may encounter when coding extensions

a) Wrong case for module names

Be careful with the case for module names. For instant, if you have an extension

provided as BZ__SuperBezier.rb, which contains a module SuperBezier then

 BZ__SUPERBEZIER_LIST = ["SuperBezier"] is a Valid form

 BZ__SuperBezier_LIST = ["SuperBezier"] is also a Valid form

But

 BZ__SUPERBEZIER_LIST = ["SUPERBEZIER "] is not valid

 BZ__SUPERBEZIER_LIST = ["SuperBEZIER "] is not valid either

b) Wrong case for constants

All constants BZ_xxx must all be defined in UPPERCASE. Otherwise, they would

be simply ignored.

c) Several versions of the file in the Sketchup Plugins directory

Keep in mind that Sketchup automatically loads all the .rb files present in the

Plugins directory (order is very often alphabetic, but it may depends on what each

script does with require or load statements. So if you have several copies of your

same module (in files respecting however the BZ__ convention), the effect may

not be predictable, as:

- In principle, the bezierspline.rb macro would not find the extension module

since the LIST constants is probably not based on the file name

- However, the module will be defined in Ruby, and so the constants.

As a result, you'll likely get a mix of your two files.

So if in your code editor you sometimes do a "Save as Copy", be careful to do it in

another directory than the Sketchup Plugins folder or the BZ_Dir folder.

Fredo6 – Extensions to bezierspline.rb Page 12 / 12 v1.0 – 02 November 2007

d) Optional arguments in bz_compute_curve or bz_ask_extra

In principle, you should be clear and consistent about the arguments of these

callback methods.

There is anyway a check on the number of arguments in order to adapt to your

form of callback, but for whatever reason, there is a bug in the interpreter

concerning the arity method when there are optional arguments.

So be careful NOT to have optional arguments in the callbacks, such as:

def bz_compute_curve pts, precision, loop=0, extras=nil

The valid forms for callbacks are:

def bz_compute_curve pts, precision #don't care with loop mode and extras

def bz_compute_curve pts, precision, loop #don't care with extras

def bz_compute_curve pts, precision, loop, extras #general form

and:

def bz_ask_extra mode, extras, pts, precision #single form

